Conjugate Heat Transfer Predictions of a Combustor Heatshield Containing Pedestals

نویسنده

  • J. K. Luff
چکیده

This paper reports an investigation into the use of CFD methods for modelling the combined fluid flow and heat transfer in a generic combustor heatshield geometry typical of current aeroengine designs. The study describes the development and testing of a conjugate heat transfer methodology, to allow the CFD code to predict the heat exchange in both fluid and solid regions of the solution domain simultaneously; special attention is given to continuity of heat flux at the fluid/solid interface. The heatshield cooling air is supplied via rows of jets that flow through holes in the backplate and impinge on the heatshield backside. An interesting phenomenon associated with these jets is investigated. It is noticed that under some conditions of heatshield flow, jet impingement leads to the model predicting a minimum in heat transfer coefficient, rather than a maximum, at the impingement point. It is shown, by predicting the measured Nusselt number distribution in a single impinging jet experiment, that this is a correct simulation, associated with the combined effects of low impingement height and low turbulence levels in the jet cores. The presence of pedestals on the impingement surface removes this effect by creating extra turbulence and enhancing conductive paths for heat transfer. A model for including the pedestals in both flow and heat exchange processes as a sub-grid-scale model in the CFD simulation is described. An illustrative calculation of the performance of the overall model for a realistic heatshield geometry is provided, indicating the predicted spatial variation of temperature on heatshield surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

متن کامل

Effect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer

In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...

متن کامل

Evaluation of wall thickness and porosity effects on the conjugate free convection heat transfer rate of hybrid nanofluid inside a square cavity

At present study, effects of wall thickness and porosity on the conjugate free convection heat transfer inside a square cavity have been examined. Continuity, momentum and energy equations for fluid and solid matrix phases are governing equations in present work. Mentioned equations and related boundary conditions have been transformed into their non-dimensional forms. They are solved using fin...

متن کامل

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

The Overall Heat Transfer Characteristics of a Double Pipe Heat Exchanger: Comparison of Experimental Data with Predictions of Standard Correlations

The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002